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A generalized definition of the parity of Kekule structures is proposed. 

In the last decade, several papers have appeared in which the concept of parity 
of Kekule structures has been examined 1 -7. The concept of parity is a rather im­
portant concept in the parametrized empirical valence-bond theory called structure­
-resonance theory8-16. For the structure-resonance theory to cover the whole set 
of conjugated structures, the concept of parity must be valid generally17. 

The concept of parity was introduced by Dewar and Longuet-Higgins18 in their 
work on the correspondence principle between resonance theory and the MO method. 
They found that the Kekule structures of altemant hydrocarbons may be partitioned 
into two classes of different parity: even and odd. In recent years some authors 
have tried to generalize the original concept of parity to non-alternant struc­
tures2 -4,19. In these reports, the original definition of Dewar and Longuet-Higgins18 

(DLH definition) has been over-simplified and unfortunately misinterpreted (see, 
for example, Gutman and Trinajstic2 : "Two KekuIe structures are of the same parity 
if one structures is obtained from the other by permutation of an odd number 
of double bonds.", or Randic3 : "Parity is determined by whether the number of per­
mutations of double bonds required to transform one of the structures to the other 
is even or odd."). As a result of this misunderstanding, it was deduced that the DLH 
definition predicts opposite parities for some KekuIe structures of pyrene2, contra­
dicting to the view that benzenoid systems all have structures of the same parity. 

The original DLH definition 18 is summarized below. 

* Permanent address: The Rugjer Boskovic Institute, P.D.B. 41001 Zagreb, Croatia, 
Yugoslavia. 
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RESULTS 

Definition I 

Let us number the n atoms (n = even) of an altern ant hydrocarbon G in such 
a way that neither two odd-labelled nor two even-labelled atoms are directly linked. 
The Kekule structure «1, p(2», (3, p(4», (5, p(6», ... , (2n - 1, p(2n») is then defined 
to be positive or negative if atoms 1,2, ... , 2n - 1 are paired with an even or odd 
permutation of atoms 2,4, ... , 2n respectively (i.e., if the permutation p is even 
or odd). 

We recall that the permutation p (being even or odd) bears no direct relationship 
to the number of elements that are permuted. The permutation is even (odd) if and 
only jf it can be obtained as a composition of an even (odd) number of transpositions. 
Transpositions are similar to "basic permutations", in that they keep all except 
two adjacent elements fixed, but these two are exchanged. For example, the cyclic 
permutation of an odd number of elements is always even. Thus, in the case of pyrene 
we see from Fig. 1 that the first KekuIe structure is given by «1,2), (3,4), (5,6), ... 
... , (15, 16» and the second by «1,6), (3, 2), (5, 4), (7, 8), (9, 10), (11, 16), (13, 12), 
(15,14», so that the corresponding permutation is p = (6,2,4,8,10,16,12,14). 
It is composed from two cyclic permutations (6,2,4) and (16, 12, 14) while elements 8 
and 10 are fixed. 

p is thus an even permutation and both structures are of the same parity, as ex­
pected. We note that the assignment of a positive or negative value to one class 
of parity is arbitrary, because it depends on the initial numbering. 

For alternant hydrocarbons (AHs) the following proposition holds. 

Proposition 1 

The DLH relationship to be of the same parity, defined for the set of all Kekule 
structures by definition I, is equivalence relationship (i.e., it is reftexive, symmetric, 
and transitive) and the set of Kekule structures of a given AH splits up into exactly 
two classes of equivalence. 

FIG. 1 

Kekule structure of pyrene 
14 
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Proof 

Reflexivity is trivial. Symmetricity follows from the fact that if p is an even (odd) 
permutation, so is p-l (inverse permutation). Transitivity: Let Ka, Kb, Kg be three 
Kekule structures of the same AH, with Ka and Kb, and Kb and Kg having the same 
parity. As Ka and Kb are of the same parity, Kb can be obtained from Ka by means 
of an even permutation p, and by the same reasoning Kg can be obtained from Kb 
by means of an even permutation p'. But the composition of two even permutations 
is itself an even permutation, so that Ka and Kg are again of the same parity. The last 
part of the proposition follows from the fact that each permutation has to be either 
even or odd (there is no other possibility), and composition of any two odd permuta­
tions is an even permutation. 

On the basis of the seeming objections against the original DLH definition, a new 
definition has been proposed2,4. Let us remind the reader that the Kekule structures 
of a given conjugated molecule may be represented by Kekule graphs19,20. Kekule 
graphs are isomorphic with 1-factors of a graph21 . 

Definition II 

Two different Kekule structures (l-factors) of a given polycyclic conjugated molecule 
(general graph G) are of the same parity if the number of the 4n-membered rings 
in their superposition graph is even. 

This definition may be analyzed in the following way. Let the Kekule structures 
and the corresponding Kekule graphs be denoted by Ka, Kb, ... , Kn and ka, kb' ... , kn' 
respectively. Let the superposition of ka and kb give the graph Gab' Let also the number 
of cycles (circuits) of length 4n (cyclic components of size 4n, n = 1,2, ... ) in the 
graph G be R4n( G). Furthermore, let Pa = + 1 if Ka is an even and Pb = - 1 if Kb 
is an odd Kekule structure. Then, the relationship 

(1) 

determines the parity of the Kekule structures. Thus, two Kekule structures are 
of the same ( opposite) parity if and only if R4n( Gab) is even (odd). 

Proposition 2 

For AHs, definition I and definition II are equivalent. 

Proof 

First note, that if Kb is obtained from Ka by means of just one cyclic permutation 
then their superposition is just one ring (this ring is of length 4n if the number of per­
muted elements is even, i.e. the permutation is odd, and oflength 4n + 2 if the number 
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of permuted elements is odd, i.e. the permutation is even). Recall also that any 
permutation can be obtained as a combination of cyclic permutations. Now let 
the Kekule structure Kb be obtained from Ka by means of an even (odd) permutation 
p. This can be generally decomposed into several cyclic permutations of an odd 
number of elements (as these permutations are even), and an even (odd) number 
of cyclic permutations of an even number of elements. This means that the super­
position of ka and kb gives several 4n + 2 rings and an even (odd) number of 4n 
rings, q.e.d .. 

Hence, there are no problems with the definition of parity for Kekule structures 
of altern ant hydrocarbons. 

We now investigate the generalization of the notion of parity of Kekule structures 
to non-alternant hydrocarbons (NHs), or in graph theoretical language22 ,23 to all 
graphs having i-factors. Thus, we attempt to define a relationship to be of the same 
parity for the set of all i-factors (Kekule structures) of a given planar graph (con­
jugated hydrocarbon). Thus, this relationship should be transitive and, of course, 
reflexive and symmetric (equivalence), since only then will the set of KekuIe structures 
split up into several classes of equivalence. When we have exactly two such classes 
we denote one of them by K + and the second by K -, following the suggestion 
by Dewar and Longuet-Higgins. Thus, the total number of Kekule structures K 
is equal to the sum of positive (even) and negative (odd) Kekule structures, 

(2) 

Similarly, the difference between even and odd Kekule structures is introduced 
as the algebraic structure count,24,25 ACS, or the corrected structure count 1 ,26 CSC, 

(3) 

Unfortunately, neither definition I nor definition II can be used as a basis for the 
required generalization. Definition I cannot be used at all, because for NHs the desired 
labelling does not generally exist. Definitjon II can be extended to include NAs, 
but does not lead to equivalence. 

Proposition 3 

The relationship to be of the same parity defined by the definition II is not transitive 
for the set of all graphs having i-factors. 

Proof 

We will show that there exists a graph and its three i-factors ka' kb' kc such that 
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ka and kb are of the same parity, kb and kc are of the same parity, but ka and kc 
are opposite parity. Let us take Kg (a complete graph on eight vertices)27: 

As an abstract structures, we can create among many the following three Kekul6 
structures of Ks: 

K 
a 

whose corresponding Kekul6 graphs (i-factors) are given below: 

k 
a 
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For their superpositions we obtain the following structures: 

Ki'ivka, Trinajstic : 

k k 
a c 

In the superposition of ka and kb two 4n (n = 1) rings are present, whilst in kakc 
there is one 4n (n = 2) ring. The superposition structure kbkc does not contain 4n 
rings. 

The only remaining possibility of formulating a general definition of parity to in­
clude non-a-lternant hydrocarbons is to investigate the simplified DLH definition2.4. 
Why does it fail in the case of pyrene2 ? 

When we look at two Kekule structures of pyrene in Fig. 1, we see that the permuta­
tion of bonds can be performed in two independent steps: first we permute three 
bonds in the upper hexagon and then three bonds in the lower hexagon. Since both 
of these operations are parity preserving, it is natural to assume that their composi­
tion should also be parity preserving. The above may be rephrased as follows: 
Even if we have permuted an even number of bonds, the original and final Kekule 
structures are of the same parity, providing we can perform the permutation in several 
independent steps, each of them involving an odd number of bonds. 

From the above considerations, we propose a general definition as follows: 

Definition III 

Two different KekuIe structures K and K' of a conjugated molecule (graph) G are 
said to be of the same parity if three exists a sequence K 1 , K 2 , ••• , Kn of Kekule 
structures of G such that K = Kl and K' = Kn and for every i = 1,2, ... , n - 1 
the number of transpositions of double bonds required to transform K j into K j + 1 

is odd. Otherwise, K and K' are said to be of different parity. 

The relationship to be of the same parity, according to Definition III, is transitive 
(i.e. equivalence), without any internal inconsistencies, and is applicable to any 
graph G having 1-factors. (It is therefore applicable to any conjugated system that 
possesses Kekule structures). 
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There is also the question of there being more than just two classes of parity to be 
considered4 • Examples of such molecules are tricyclic systems with fused odd-mem­
bered rings2 such as acepentylene(I) or polycyclic systems with fused rings such as 
ace-as-indacene (11). 

I II 

In such cases we could either include complex numbers and deal with several 
different parities (e.g., the roots of the equation xn = -1) or abandon the concept 
of parity completely28. Actually, in the case of acepentylene, its three Kekule structures 
(see below) are equivalent (since they can be obtained one from another by turning 
around the central point for 120°). But, there already are some other molecules 
possessing KekuIe structures of different parity in spite of their equivalency, e.g. 
cyclobutadiene and pentalene. 

f{ 
a 

In the case of ace-as-indacene, the Kekule structures are even non-symmetric4 • 
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It easy to see that the first structure can be transformed to the second one by per­
muting the even number (4) of double bonds, the second one to the third again 
by permuting the even number (6) of double bonds and the third one to the first 
one also by permuting the even number (6) od double bonds. So there is no contra­
diction but in spite of internal consistency we have three classes of different parity. 

There is another definition of the parity of Kekule structures available in the litera­
ture3 • However, this is actually the definition of the parameter called the algebraic 
circuit count, ACC, attributed to individual Kekule structures, not a relationship 
definition. The parameter ACC of an individual Kekule structure represents the sum 
of the (4m + 2)- and (4m)-conjugated circuits l9 ,29-36 belonging to this valence 
structure. Each (4m + 2)-conjugated circuits contributes + 1 to ACC, while each 
(4m)-conjugated circuit contributes -1. 

For example, for each Kekule structure of acepentylene, ACC = -2. Randic's 
ACC parameter is also invariant under a symmetry operation but does not possess the 
generality of definition III, i.e., it is not applicable to graphs with 1-factors outside 
the set of graphs representing polycyclic conjugated molecules. However, it is sufficient 
for applications to the chemistry of conjugated structures. 
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Professor M. Randic (Ames), and Dr T. Zivkovic (Zagreb) for helpful discussions and correspon­
dence on the concept of parity of Kekule structures. One of us (N. T.) is grateful to Professor B. M. 
Gimarc for making his stay at the University of South Carolina both possible and pleasant and 
for many friendly discussions on the use of qualitative theoretical models in chemistry. We also 
thank the referees for helpful comments. 
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